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Abstract
Nowadays, multimedia content, such as photographs and movies, is ingrained in every aspect of human lives and has

become a vital component of their entertainment. Multimedia content, such as videos or movie clips, is typically created

with the intent to evoke certain feelings or emotions in viewers. Thus, by examining the viewer’s cognitive state while

watching such content, its affectiveness can be evaluated. Considering the emotional aspect of videos, in this paper, a deep

learning-based paradigm for affective tagging of video clips is proposed, in which participants’ irrational EEG responses

are used to examine how people perceive videos. The information behind different brain regions, frequency waves, and

connections among them play an important role in understanding a human’s cognitive state. Thus, here a contribution is

made toward the effective modeling of EEG signals through two different representations, i.e., spatial feature matrix and

combined power spectral density maps. The proposed feature representations highlight the spatial features of EEG signals

and are therefore used to train a convolution neural network model for implicit tagging of two categories of videos in the

Arousal domain, i.e., ‘‘Low Arousal’’ and ‘‘High Arousal.’’ The arousal emotional space represents the excitement level of

the viewer; thus, this domain is selected to analyze the viewer’s engagement while watching video clips. The proposed

model is developed using the EEG data taken from publicly available datasets ‘‘AMIGOS’’ and ‘‘DREAMER.’’ The model

is tested using two different approaches, i.e., single-subject classification and multi-subject classification, and an average

accuracy of 90%-95% and 90%-93% is achieved, respectively. The simulations presented in this paper show the pioneering

applicability of the proposed framework for the development of brain–computer interface (BCI) devices for affective

tagging of videos.
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1 Introduction

Recently, due to the wide range of availability of smart

handheld and display devices, a massive creation, usage,

and circulation of digital images and videos have been

observed [1]. With this increasing size of image and video

repositories, the need for their automatic evaluation, tag-

ging, and indexing is also in high demand, especially for

highly tailored requirements and criteria for their efficient

management [2, 3]. Since most of these images and videos

are intended for humans, the inclusion of subjective aspects

in their analysis methods plays an important role [4]. The

multimedia data, i.e., images and videos, are usually

developed with certain planned emotions which the makers

want to induce in its viewers [5, 6]. As emotions represent

affective experiences of one’s feelings, they can play a

significant role in analyzing affectiveness and interesting-

ness of the multimedia content. Thus, emotion is always

considered one of the important factors in analyzing

videos. The emotional aspect of video content provides a

subjective as well as high-level analysis of it which is

considered as a suitable criterion for their indexing and

categorization [7, 8].

To date, many research attempts have been conducted to

analyze the videos by extracting various content-related

data [9, 10]. Numerous theoretical and computational

models were also put forth for their efficient analysis.

These systems currently in use are mostly based on low-

level elements like visual and audio characteristics

[4, 10, 11], whereas the role of subjective and perceptual

characteristics for their assessment is little explored. In

short, an affective analysis and tagging of videos promise a

new direction toward the most popular problem areas in the

multimedia community, such as automatic video summa-

rization, highlight extraction, indexing, etc. [10, 11].

Furthermore, for the past few years, the multimedia

community has been working on simulating the cognitive

capacities of humans into machines to improve their effi-

ciency [12]. Today, with the advancement in neuroscience

technologies, the field of cognitive psychology has become

an interesting way for modern researchers to comprehend

human behavior through the study of interdependent

mental processes [13, 14]. Neural signal processing and

brain–computer interfaces can be used to decipher various

brain functions [12, 15]. They can assist complex infor-

mation dispensation of the human brain for the detection of

a range of cognitive states which can further help in ana-

lyzing the multimedia content. Neuroimaging studies can

be very useful in predicting the unconscious responses of

users to different kinds of multimedia information, such as

movies, cricket videos, online video commercials, etc.

[16, 17]. To date, ‘‘Functional Magnetic Resonance

Imaging (fMRI)’’, ‘‘Positron emission tomography (PET)’’,

‘‘Computed Tomography (CT)’’, ‘‘Electroencephalograph

(EEG)’’, and other technologies have been successfully

applied to record and analyze brain activity [14].

Researchers have also been attempting to investigate the

application of portable and affordable EEG devices in a

variety of potential domains [13, 15, 16]. The evaluation of

multimedia information using EEG waves is another area

of active research [17–19]. Here, the affectiveness of video

content is modeled by analyzing the affective state of

viewers. In the literature, most of the research is done for

classifying human emotion using EEG signals [20–23],

whereas the field of analyzing the affectiveness of multi-

media content using neurophysiological signals is largely

unexplored.

In this paper, a framework for facilitating the implicit

affective classification of video clips is presented by

modeling the human’s cognitive state while watching such

content. This modeling is inspired by the utilization of

EEG signals as well as the role of affect in evaluating video

content. Furthermore, it is a well-established fact that the

information behind different brain regions, frequency

waves, and connection among them plays an important role

in the effective analysis of a human’s cognitive state.

Motivated by this, two effective modeling of EEG signals

are proposed here, i.e., spatial feature matrix (SFM) and

combined power spectral density maps (PSDM) represen-

tation of EEG signals. These feature modeling represen-

tations highlight the spatial features of EEG signals and

thus they are used to explore the power of deep learning in

the current field and a convolution neural network (CNN)-

based framework for affective tagging of videos is pro-

posed. The following elements form the foundation of the

work presented in this paper:

• As most multimedia content like images and videos,

etc., are made to induce strong neural responses in

users, it is believed that the incorporation of EEG

signals will be beneficial for mapping human perception

in existing video analysis frameworks.

• It is a well-established fact in neuroscience that

different brain regions and frequency ranges represent

different cognitive states of humans. Furthermore, these

brain locations do not work in isolation, their connec-

tivity plays an important role in analyzing the human

cognitive state. Thus, the spatial characteristics of EEG

signals and the connection between brain regions and

frequency ranges are considered, and effective model-

ing of EEG signals is proposed here.

• Different brain regions and frequency ranges represent

different cognitive states of humans. Furthermore, these

brain locations do not work in isolation, their connec-

tivity plays an important. Thus, the spatial
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characteristics of EEG signals and the connection

between brain regions and frequency ranges are

considered to model the affective state of humans.

• To date, many machine learning (ML) and deep

learning (DL) methods have been explored for auto-

matic EEG signals classification. Thus, the power of

deep learning is explored along with the higher and

lower-level representations of EEG signals to accu-

rately simulate the automated emotive tagging of

videos.

To develop a model for affective video tagging using

their EEG responses, in this paper videos under two

extreme categories are considered, i.e., videos having

highly exciting content and boring content. The ‘‘Arousal’’

dimension is taken into consideration for selecting the EEG

data from publicly available datasets. The primary contri-

butions the work presented in this paper are:

• First, to analyze the EEG signals corresponding to

different video content, PSD-based features are

extracted and explored at various brain regions and

frequency ranges.

• Second for effective modeling of spatial characteristics

of EEG signals and connections among different

frequency ranges, two types of representations are used

to present the input data, one is a multichannel and

multi-frequency feature matrix representation of PSD

values at all frequency ranges and channel positions,

and another one is an image-based representation of

these values through PSD maps.

• Third, to test the applicability of two different ways of

EEG signal modeling, a CNN-based model is trained on

both SFM and PSDM. The training and testing of the

model are done under two categories, i.e., single subject

classification and multi-subject classification to analyze

the performance of the model on subject-specific and

generalized data.

The proposed work toward the affective video tagging

framework is further structured in remaining of this paper

as; the background and related work section provides

detailed information about the topic of study to readers.

Here a discussion on the role of affect on video content

analysis and the use of EEG signals in diverse fields

including multimedia content analysis is discussed. Fur-

thermore, the importance of different brain areas and fre-

quency ranges for analyzing the cognitive state of humans

is presented followed by limitations in the current field of

work. In the materials and methodology section, the

description of the dataset used for the experiment along

with the different steps in developing the proposed

framework is explained in detail. Various intermediate

results obtained during the development of the model and

the performance of the proposed framework are analyzed

in the results section. At last, the proposed work along with

its limitations and future directions are discussed in the

conclusion section.

2 Background and related work

‘‘Life is listless and colorless without emotion [5].’’ Mul-

timedia content, such as movie trailers, music videos,

advertisements, etc., are also made to make the viewer feel

a certain way [24]. The effective analysis and tagging of

videos usually depend on their effective characteristics,

such as how interesting that video is or what is the capa-

bility of content to get the viewer engaged [6]. For

instance, while designing a movie, to keep viewers inter-

ested action sequences that evoke surprise are frequently

cut between scenes, while horror films that evoke fear are

frequently shot in low light to make the setting seem bleak

[24]. These cues have an implicit impact on how the

audience reacts to the content and can offer a strong link

between the content and subjective evaluations of human

observers [25, 26]. To date, manual user ratings have been

a major driving force in the design of multimedia material

to elicit specific emotions, but this requires a sluggish and

attention-demanding procedure by a human observer.

‘‘Affective computing’’ is a popular direction of study

that deals with the analysis of affective state of humans

[5, 27]. To date, most of the research conducted in this field

has been devoted to identifying and categorizing human

emotions by analyzing facial expressions or a variety of

physiological characteristics such as ‘‘EEG’’, ‘‘Elec-

tromyogram (EMG)’’, ‘‘Electrocardiogram (ECG)’’, ‘‘Gal-

vanic Skin Response (GSR)’’, etc. [16, 20–23]. Since,

emotion is an important aspect of everyone’s life, assigning

emotional tags to digital videos has been a popular topic of

study in recent years [4, 6]. The emotional tagging of

videos can be broadly classified into two categories:

direct(explicit) and implicit. The direct method is a way of

tagging the videos with emotions depending on their con-

tent, whereas implicit techniques derive the emotional tags

of videos from a user’s irrational reaction while they are

watching them [10, 24, 25]. Developing an automated

implicit video tagging system considering the emotion of

the viewer can result in fascinating applications that can

improve already-existing applications such as classifying

movie genres or analyzing advertisement’s impact, etc.

[23, 24].

In recent years, the utilization of biosensing signals such

as ‘‘EEG’’, ‘‘ECG’’, ‘‘EMG’’, ‘‘GSR’’ etc., has sparked

interest in the field of affective computing [13, 14]. Fur-

thermore, non-invasive BCI devices are in high demand as

a result of the widespread availability and decreasing cost
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of EEG systems. As brain signal conveys detailed infor-

mation about a subject’s cognitive state, there have been

numerous attempts in the literature to use EEG signals for a

diversity of applications, such as emotion recognition

[16, 20], behavioral modeling [28], detection of neuro-

logical diseases, etc. [29–31].

Electroencephalography is a method wherein electrical

signal strength from the brain is measured using a device

‘‘electroencephalogram’’ [14]. It is a non-invasive method,

in which several electrodes are placed at different scalp

areas to capture signals from different parts of the brain.

The human brain is usually classified into four broad sec-

tions: the ‘‘frontal lobe’’, ‘‘parietal lobe’’, ‘‘temporal lobe’’,

and ‘‘occipital lobe’’ as shown in Fig. 1. Each part of the

brain handles the task of processing information differ-

ently; for example, when performing a visual activity, the

frontal lobe typically deals with decision-related activities,

whereas the parietal section deals with action-related

activities [12, 14]. The temporal lobe is often active for

tasks involving object recognition, whereas the occipital

lobe is engaged for attention-oriented tasks [12]. Thus,

proper modeling of captured signals at different brain

regions is very important to understand the cognitive state

concerning the tasks being performed.

The EEG signals contain rich neural activity information

about the human brain especially in the frequency range of

2–64 Hz [13]. Furthermore, when the brain is in a certain

state, its electrical pattern generates variable frequency

patterns in different frequency ranges depending on the

cognitive state of the brain. High-frequency ranges such as

‘‘Gamma ([ 32 Hz)’’, ‘‘Beta (16–32 Hz)’’ and low-fre-

quency ranges such as ‘‘Alpha (8–16 Hz)’’, ‘‘Theta

(4–8 Hz)’’, ‘‘Delta (\ 4 Hz)’’ are some of the popular

frequency ranges that are effectively employed in the lit-

erature for cognition study [12, 13]. These frequency ran-

ges have different roles in assessing a person’s cognitive

state. It is clear, for instance, that low-frequency ranges are

typically linked to unconscious cognition, that’s why the

alpha waves are very active during a relaxed state of the

brain in the occipital and parietal brain areas [20]. Addi-

tionally, high-frequency waves in the frontal brain section

and other sections of the brain are frequently associated

with mental acuity [32].

In the literature, very few studies have been found for

multimedia content using EEG signals. Among earlier

studies in the related domain, one was published in [33],

where authors performed a ‘‘Rapid Serial Visual Presen-

tation (RSVP)’’ experiment to examine human attention

through their EEG responses. Here a series of images along

with the target image has been presented to viewers to

analyze their attention process and to track their viewing

pattern. Various similar studies have been found in

[34–36]. EEG signals were also investigated to address a

range of computer vision tasks, such as object categoriza-

tion [37], object segmentation [38], object identification

[39], and searching of images [40], etc. A portion of the

research also investigated combining different modalities

such as EEG, eye-tracking, and user ratings to examine

artifacts in images and videos [41]. One of the studies

utilizing EEG for visual data categorization is presented by

authors in [42]. Here, the authors presented a strategy for

merging EEG-based extracted features to increase the

object categorization accuracy for six different categories.

Some similar works were reported in [25, 26, 43], where

authors utilized the EEG signals for analyzing the matched

and unmatched tagging of multimedia content.

The proposed work presented in this paper forms a base

on the survey and analysis done by authors in [5–8, 27],

which presented a thorough analysis of related fields such

as affective computing, affective multimedia content

analysis, and the need for affective video analysis systems.

Some similar attempts to the proposed work can be found

in [44–46], where authors presented a hybrid emotional

tagging framework using the combination of EEG and

various video content features, such as audio and visual

[44]. Furthermore, an advanced image-based representation

of EEG signals to train the CNN network for emotion

classification is provided in [45]. A combination of dif-

ferent deep learning architectures for the emotional tagging

of videos is explored in [46]. In [47], the authors explored

the use of the graph convolution neural network (GCNN)

for identifying the videos using EEG signals. Here authors

tried to model the EEG signals as signals on a graph to

further train the GCCN.

For understanding human elicitation, the past decade has

primarily witnessed two types of research. The emotion of

an audience is mapped using facial expressions or other

physiological data. Diverse efforts are also made to identify

ideal features for efficiently mapping the viewer’s emo-

tions [12, 14, 22]. These approaches do not consider visual

stimuli. And in other research, emotive video clips are

utilized to gauge the viewer’s emotions. But most of theFig. 1 Human brain structure [12]
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research utilizes subjective input for classifying emotions

[20, 21, 23]. Furthermore, it has been noted in the previ-

ously published works that most techniques for classifying

EEG signals entail the extraction of different kinds of

features, including ‘‘time-domain’’, ‘‘frequency-domain’’,

and ‘‘time–frequency domain features’’ [13–16]. These

feature combinations have also been tested to improve the

accuracy of several classification models [21–23, 32].

According to the present literature, the following major

limitations have been found, which are considered while

developing the proposed model.

• Most of the previous research on affective computing

has been devoted to the classification of emotions

evoked by emotional visual stimuli. The researchers did

not consider the fact which type of content is affecting

human emotion mostly.

• EEG signals were explored blindly with different

combinations of classification methods for the auto-

matic classification of human affective states.

• The major insight that which brain region and fre-

quency bands contain the most effective information is

ignored while designing a model.

• Furthermore, the relationship between multimedia con-

tent and physiological responses is not addressed

thoroughly with the aim of affective content analysis.

To address the above-mentioned gaps, in this paper, two

different representations of EEG signals are used to explore

the relationship between various important frequency ran-

ges and brain regions. A deep learning-based model is

proposed for affective implicit tagging of videos through

EEG signals. For the better representation of EEG signals

two different methods are presented here to train the CNN-

based model for automatic tagging of videos. Instead of

using EEG signals in isolation, these two feature modeling

representations are proposed here to explore the power of

spatial characteristics of EEG. Furthermore, these two

representations are used to train the deep learning model to

facilitate the automatic tagging of videos. A detailed

explanation of the proposed methodology and experimental

results is presented in further sections.

3 Materials and methodology

Video clips are usually created with the intent to produce

certain feelings in viewers. Thus, considering the emo-

tional aspects of videos here an affective video classifica-

tion framework is proposed, which utilizes the irrational

EEG responses of the viewers corresponding to video clips

for assigning affective tags to them. In this section, a step-

by-step explanation of the development of the proposed

affective video tagging framework is described. The

workflow of the proposed approach is presented in Fig. 2.

Here, EEG signals corresponding to two different types

of videos are used to develop the model. The EEG signals

captured at different brain locations are first analyzed at

well-known frequency ranges by extracting power spectral

density-based features. As discussed in Sect. 2, specific

brain areas, frequency ranges, and connections among

them serve distinct functions in the study of the human

cognitive state, thus the extracted features are then encoded

to model the human cognitive state to measure the power of

engagement of video content. The feature encoding is done

to generate a better representation of EEG features, which

can maintain the spatial characteristics at different brain

locations and connections between frequency ranges which

is the most important thing in EEG signal modeling. These

two types of encoded features are then used to train the

CNN model to facilitate affective tagging of videos.

3.1 Dataset description

Suitable modeling for emotions must be done to examine a

given visual piece at an affective level. According to

research in cognition and neuroscience, human emotions

can commonly be categorized as continuous and discrete

[5, 6]. In contrast to categorical categories like surprise,

happiness, sadness, disgust, fear, or rage, continuous

emotions are those that are defined using dimensions like

positive–negative or calm-aroused [7, 8]. To generate dif-

ferent types of emotions among viewers different types of

emotional clips are usually used. Various publicly available

datasets are also present in the literature, where different

neuro-physiological signals are recorded while presenting

the emotional clips or images to the viewers. These emo-

tional videos are developed on the dimension of ‘‘Valence-

Arousal’’ (V-A) emotional dimensional space [43]. This

dimensional model is used to provide a quantitative anal-

ysis of the emotion. Valence is usually measured on the

scale of positive and negative, in the range of pleasantness

or unpleasantness respectively, whereas arousal represents

the strength of evoked or induced emotion in the range of

low to high as presented in Fig. 3.

Various publicly available datasets such as MANHOB-

HCI [43], AMIGOS [48], DREAMER [49], DEAP [50],

and DECAF [51], etc., exist, which contain the EEG

recordings of the participants corresponding to the affec-

tive video clips. These datasets differ in many aspects, such

as modalities to collect physiological recordings, number

of participants, type of video, self-assessment, etc. Due to

variations in the quantity and kind of retrieved features,

many classical techniques cannot be generalized across

datasets. In addition to the forms of audio-visual stimula-

tion (music videos vs. movie clips), the datasets differ in
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the length of the trial and the availability of baseline data

also.

In this paper, AMIGOS [40] and DREAMER [41]

datasets are used to develop and test the model. These two

datasets are chosen, as they contain a uniform number of

EEG recordings, i.e., at 14 channel locations using the

same signal-capturing device as well as the same sampling

rate of 128 Hz, which facilitates uniform modeling of the

proposed approach. The detailed information on these two

datasets is presented in Table 1. Furthermore, various steps

involved in the development of the video tagging model in

further subsections are explained with the help of EEG data

from the AMIGOS dataset.

3.1.1 AMIGOS dataset [48]

It is a dataset for exploring the emotion, behavior, and

mood of the viewers while watching short and long video

clips. In this dataset physiological recordings (EEG, ECG,

and GSR) of forty (thirteen female) participants are present

concerning different affective video clips for two different

experiments, i.e., short experiment and long experiment.

The clips used in the experiment were chosen depending on

where they fell on the V-A dimensional space [Fig. 3]. In

the short experiment, participants watched 16 video clips

(four from each quadrant of V-A space) of a duration of

approximately 250 s, whereas, in the long experiment, they

watched four videos of about 20 min duration. The affec-

tive reactions of the participants were observed in two

separate situations: one, when the participant watched

videos alone, and the other one is when they watched

videos in a group. The dataset also includes participants’

high-definition facial and full-body depth recordings.

3.1.2 Video stimuli

In this paper, for developing the proposed model, the EEG

dataset of forty participants corresponding to affective

video stimuli from the arousal quadrant, i.e., videos having

content capable of generating high arousal (HA) and low

arousal (LA) is selected. The arousal emotional space

represents the excitement level of the viewer. Thus, it is

used to analyze the videos based on the fact that how much

the viewer is attentive while watching it. The details of

these videos corresponding to the two quadrants are pre-

sented in Table 2.

3.1.3 Trial Structure

In the short experiment, the recording of EEG data of

participants for 16 videos in the arousal category is done in

16 different trials. The structure of the trial is presented in

Fig. 4. Here self-assessment of participants is taken before

and after each trial to track the participant’s emotional

state, for which participants were asked to give responses

on the dimensions of valence, arousal, dominance, liking,

and familiarity. Then, participants were asked to list at

least one basic emotion, such as Neutral, Happiness, Sad-

ness, Surprise, Fear, Anger, or Disgust. After self-assess-

ment, a fixation cross is presented for five seconds followed

by a presentation of the video clip. The required sensory

data such as EEG, ECG, and GSR were collected during

both baseline and visual stimuli periods.

3.2 EEG Data analysis and feature extraction

3.2.1 Pre-Processing of EEG Data

The pre-processing of EEG signals is a crucial step in their

analysis since due to modest voltage variations they fre-

quently have very low signal-to-noise ratio. They are also

impacted by other artifacts, such as signal line noise, noise

from muscle actions, eye blinks, etc. In the AMIGOS [48]

and DREAMER [49] datasets, EEG data of participants at

various brain regions is recorded using 14 channel elec-

trodes as shown in Fig. 5. Here to remove noise from the

EEG data, first, ocular artifacts from EEG data at all

channel locations are removed using the independent

component analysis (ICA)-based blind source separation

technique [18]. In addition, the re-referencing of EEG data

is performed followed by band-pass filtering between 4 and

65 Hz [18, 19].

Table 1 Dataset Description Used in the Experiment

Dataset No. of

participants

Stimuli and

duration

EEG Data recording specification

AMIGOS (2018)

[48]

40 (13 female) 16 movie clips

(51–150 s)

Sampling rate: 128 Hz

No. of Channels: 14

Channel positions: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4,

M1 and M2’’

Recording device: ‘‘Emotiv EPOC Neuroheadset’’

DREAMER (2018)

[49]

23 (16 female) 18 movie clips

(65 to 393 s)

Neural Computing and Applications

123



3.2.2 Frequency ranges extraction

The importance of analyzing EEG signals at different brain

regions and frequency ranges is already discussed in

Sect. 2. Thus, here EEG signals are decomposed to extract

various frequency ranges required to examine the human

cognitive state. EEG signals are typically non-stationary in

nature, therefore converting signals from the time domain

to the frequency domain is always required to determine a

meaningful spectral component from them. A popular

technique for exploring non-stationary data in the fre-

quency domain is the discrete wavelet transform (DWT). It

gives a multiresolution description for a non-stationary

signal [52]. The multiresolution analysis of any signal

involves the process of analyzing the signal at different

frequencies with different resolutions.

By breaking a signal down into several scales, DWT can

analyze it at multiple resolutions. This can be achieved by

convolving the signal with various translations and scalings

of a tiny oscillatory function, known as the mother wavelet.

Here, translation denotes the location of the window,

which, in the transformed domain, represents the passage

of time. The global and localized information of a signal

are both represented by the term scale. While analyzing the

frequencies, the globalized information is usually con-

tained in high scales, i.e., low frequencies whereas the

narrow scales, i.e., high frequencies represent the localized

and detailed information of the signal [52]. The DWT

performs the signal decomposition by applying the filters

of different cut-off frequencies [53], where high pass and

Table 2 Description of Video Stimuli Used in the Experiment

Dataset Video

category

Video description [48] Total No. of

movie clips

AMIGOS

(2018) [48]

HA

(High

Arousal)

‘‘Airplane, When Harry Met Sally, Hot Shots, Love, Silent Hill, Prestige, Pink Flamingos,

Black Swan’’

8

LA

(Low

Arousal)

‘‘Exorcist, My Girl, My Body Guard, The Thin Red Line Fatigue level detection, August Rush,

Love Actually, House of Flying Daggers, Mr Beans’ Holiday’’

8

Fig. 4 Stimuli trial structure for EEG recording (time in seconds)

Fig. 5 Channel positions for EEG data recording in AMGOS [48] and

DREAMER [49] dataset
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low pass filters are used in a recursive convolution to

separate the signal into its high and low frequency com-

ponents [54, 55]. Additionally, scaling of the signal is

carried out through downsampling, to lowers the signal’s

sampling rate [52].

In the current study, the DWT-based decomposition of

EEG signals is done using Daubechies-four (db4) mother

wavelet. Db4 wavelet is chosen after testing many wavelets

from the Daubechies wavelet family because of its good

performance and lower computing complexity than other

wavelets. Furthermore, to find the number of decomposi-

tion levels for DWT-based decomposition, the dominant

frequency component of the signal is considered. As the

EEG data used in the current study is recorded at the

sampling rate of 128 Hz, only four decomposition levels

could be employed to split the signal into the necessary

frequency ranges, namely ‘‘Gamma’’, ‘‘Beta’’, ‘‘Alpha’’,

‘‘Theta’’, and ‘‘Delta’’.

Equations (1) and (2) represent the wavelet and scaling

functions, respectively [55].

;j;k mð Þ ¼ 2�k
2h 2�km� p
� �

ð1Þ

wj;k mð Þ ¼ 2�k
2g 2�km� p
� �

ð2Þ

Here m [ 0,1,2....N-1, k [ 0,1,2... L-1, p [ 0,1,2... 2 k -1.

The length of the signal is denoted by N, and no. of levels

is represented by L which is 4 here.

By applying the high pass and low pass filtering recur-

sively along with the downsampling ratio of two, the

approximate (Ai) and detailed coefficients (Di) are gener-

ated at each level of decomposition. Equations (3) and (4)

are used to calculate Ai and Di at the ith level, respectively

[54].

Ai ¼
1
ffiffiffiffi
N

p
X

m

x mð Þ:;k;p mð Þ ð3Þ

Di ¼
1
ffiffiffiffi
N

p
X

m

x mð Þ:wk;p mð Þ ð4Þ

The required frequency ranges are then extracted by

further decomposition of approximation coefficients to

extract the detailed information stored in the signal as

depicted in Fig. 6.

The extracted frequency ranges as a result of DWT-

based signal decomposition are shown in Table 3, which

are further used to explore the human responses corre-

sponding to emotional video stimuli.

EEG Feature Extraction: Power spectral density (PSD)

is the most popular method in the literature for EEG signal

modeling [56]. The ‘‘frequency content’’ of any signal, or

how the signal power is distributed over frequency, can be

seen in its power spectrum. In this study, PSD value is

estimated for ‘‘Gamma’’, ‘‘Beta’’, ‘‘Alpha’’ and ‘‘Theta’’

frequency ranges. Furthermore, as shown in Fig. 4, during

each trial EEG data is recorded for five second baseline

period and for the video stimuli period, where each trial’s

length varies depending on how long the video is. Thus, to

analyze the effect of any particular video stimuli on the

human cognitive state the relative analysis of EEG signals

in the visual stimuli period is done with respect to the

baseline period. The EEG data corresponding to 4–4 video

clips under the arousal quadrant, i.e., HA and LA [Table 2]

is used for this study. PSD values are extracted for both

baseline and video stimuli periods. Then these values are

normalized using Eq. 5 to normalize power levels in the

Fig. 6 EEG signal decomposition using DWT for affective video analysis

Table 3 Details of Extracted Frequency Ranges

Coefficients Frequency range Band name

D1 3264 Hz Gamma

D2 1632 Hz Beta

D3 816 Hz Alpha

D4 48 Hz Theta

A4 04 Hz Delta
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stimulus period with respect to the baseline (fixation)

period, which would eliminate any constant and unrelated

activities from the EEG signals during the recording per-

iod. This normalized power is calculated for mentioned

frequency ranges corresponding to all eight trials under

mentioned categories of videos of forty participants at all

fourteen scalp locations (Fig. 5).

PN
c;b ¼ Pstimuli � Pfixation

� �
=Pfixation ð5Þ

Here, Pstimuli and Pfixation represents the power values for

channel c and frequency band b in stimuli and the fixation

time respectively, where c e [1 to 14], b e [1 to 4], and PN

denotes normalized power. In this way, the EEG signals

corresponding to each video trial of a particular participant

is characterized by a feature matrix of 14*4 dimension.

3.3 EEG feature encoding for CNN-based
classification

In the literature, very few work exists on using deep

learning frameworks utilizing EEG signals. The reason

behind this is, that capturing images and videos is much

easier than capturing any kind of bio-sensing signals.

Furthermore, different bio-sensing signals are usually

recorded with different types of devices and have different

profiles. Thus, to generalize the deep learning frameworks

for these types of signal processing is not an easy task. In

existing deep learning frameworks, CNN-based architec-

tures are the most popular models for analyzing spatial

information. These models have shown their significance in

various computer vision-related tasks also. However, the

use of these frameworks for EEG signal processing needs

more attention during pre-processing and modeling of

input data.

Mapping

Fig. 7 Electrode positions and the corresponding feature matrix

Fig. 8 Spatial feature matrix generation
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Furthermore, most of the existing work using deep

learning frameworks for analyzing EEG signals uses two-

dimensional EEG spectrograms to train the networks

[45, 46]. These spectrograms represent the information of a

single brain location at a time. Thus, while training the

model the spatial characteristics of brain regions are not

captured by the models. Whereas as discussed in Sect. 2,

the interaction among different brain regions as well as

frequency ranges are very important in understanding the

cognitive state of humans. As EEG signals contain signif-

icant information at different brain locations and frequency

ranges, they should be affectively modeled while using

deep learning frameworks. Thus here, two different EEG

feature encoding approaches are proposed to generate input

representations for CNN.

• Spatial Feature Matrix (SFM)

• Combined PSD Map (PSDM)

These feature encoding approaches are designed to

generate the better representation of EEG signals, so that

the responses of different brain regions and frequency

ranges can be used in a combined manner to model the

affective state of humans. Furthermore, these representa-

tions are used in the form of images which can further

facilitate the utilization of CNN-based networks for further

classification task. The two proposed approaches are dis-

cussed below in detail:

3.3.1 SFM-based feature encoding

In SFM-based feature encoding approach the extracted

normalized PSD values are arranged to generate a matrix

representation. The positions of the channel locations

[Fig. 5] are used to assign the corresponding locations in

the matrix. These positions can be converted into a corre-

sponding matrix of size 7 9 7 as shown in Fig. 7. Here,

green-colored points represent the corresponding channel

locations on the scalp. These matrix points are then filled

using extracted normalized PSD values of the signal at that

particular channel location. The dark points, which do not

belong to any channel locations are filled with a default

value.

Similarly, the feature matrix for signal responses in four

extracted frequency ranges [Table 3] i.e., Gamma, Beta,

Alpha and Theta is prepared. These frequency-wise

matrices are then again arranged and combined to generate

SFM of size 14 9 14 as shown in Fig. 8. SFM facilitates

the representation of frequency domain features of EEG

Fig. 9 Generation of combined power spectral density maps (PSDM)
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signals through PSD at different brain locations and

channel locations at a single place. Thus, it preserves the

spatial and frequency band characteristics of EEG signals

which is somewhere missing in most of the literature.

Furthermore, this kind of representation can be generalized

to any kind of EEG data having varying no. of channel

positions.

3.3.2 PSDM-based feature encoding

Power spectral density heat maps are one of the most

popular methods among neuroscientists to visualize the

function of various brain regions during a cognitive task.

PSD features of EEG signals are used to generate corre-

sponding heat maps. These heat maps are used to visualize

the effective brain regions through their topographical

representations. Here, the idea is to use the image-based

representations of PSD values through heat maps to gen-

erate a better representation for CNN-based networks. In

this study, heat maps are generated which contain the

topographical information of 14 brain locations. Further-

more, to model the information at different frequency

ranges, first calculated PSD values of EEG signals are used

to generate heat maps corresponding to different extracted

frequency ranges, i.e., Gamma, Beta, Alpha and Theta are

generated as shown in Fig. 9.

Fig. 10 The EEG signal of two categories of videos HA and LA in the time domain at channel AF3

Fig. 11 EEG signal representation in different frequency ranges for two categories of videos HA and LA at channel
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The color in the heat map represents the active region of

the brain for a particular cognitive task, e.g., here dark blue

color is representing less activity and the orange color is

representing high activity as presented in the bar in Fig. 9.

Thus, to create an image-based combined representation of

PSD maps, the three most significant maps are selected to

combine than like an RGB image. After rigorous analysis,

it has been found that Gamma frequency range can be

dropped, as it’s showing less activity at most of the chan-

nels. Thus, Alpha, Beta and Theta PSD maps are further

used to generate combined PSDM. Then, the CNN model

for the emotional labeling of videos is trained using these

aggregated heat maps as described in the methodology

section.

Fig. 12 CNN network training based on VGG-16

Table 4 Performance of Proposed Approach on Single Subject’s Data

Model type HA LA

Precision Recall Precision Recall

SFM-based CNN Model 0.95 0.85 0.90 0.83

PSDM-based CNN Model 0.97 0.94 0.92 0.90

Table 5 Performance of Proposed Approach on Multiple Subjects Data

Model type HA LA

Precision Recall Precision Recall

SFM-based CNN Model 0.92 0.83 0.87 0.81

PSDM-based CNN Model 0.95 0.91 0.91 0.89

Table 6 Comparative Analysis with Similar Works

Ref Task Data used Methodology Performance and analysis

[42] Video

tagging

Self-collected

data

13 participants

Different classifiers were tested considering each channel

location using several combinations of feature extraction

techniques, such as DWT, FFT, STFT, etc

80% Accuracy

Single Channel position AF8 is used

No detailed analysis to support the

choice of specific features, classifiers,

or channel location

[47] Video

tagging

DEAP

database

Graph Convolution Neural Network (GCNN)-based

classification model is proposed using power and entropy-

based features

48.25%—62.94% Accuracy

[19] Video

tagging

AMIGOS

dataset

Various frequency ranges are extracted using DWT-based

method. Different frequency domain features are

extracted and modeled to model human attentiveness

followed by SVM-based classification for video tagging

93.2% Accuracy

Two categories of videos HAHV and

LALV

Proposed

work

Vido

tagging

AMIGOS and

DREAMER

dataset

CNN based classification model is proposed with two

featured modeling methods considering the importance of

brain regions and frequency ranges

Accuracy: DREAMER dataset- 90%-

95%

AMIGOS Data Set- 90%-93%

Two categories of video HA and LA

Neural Computing and Applications

123



4 Results

In this paper, an attempt has been made for developing a

deep learning model utilizing EEG signals for providing an

automatic affective tag to video clips. For this, the rela-

tionship between affective video content and their related

EEG responses are encoded at different frequency ranges

and brain areas, and two encoded EEG feature represen-

tations are developed, i.e., SFM and PSDM as described

above. These two representations are used to train two

different CNN models for affective tagging of videos. In

this section, the two mentioned EEG feature encoding

approaches are evaluated for CNN model development.

The results are evaluated on AMIGOS [48] and DREA-

MER [49] datasets. Various intermediate results obtained

during the different phases of the development of the

models are further presented and discussed in detail with

respect to video clips from the AMIGOS dataset [48]. As

discussed in the methodology section, EEG data of 40

participants corresponding to 16 short movie clips from HA

and LA quadrants are used to extract and modeling of

features.

4.1 Data preparation

Here, the EEG signal of any participant for a particular

video clip is represented as E channels x timepoints, where

channels represent the total number of electrode positions

used to capture the brain signals and timepoints represent

the total sampling points, which depend on the sampling

rate and duration of the video clip. In AMIGOS dataset the

signals are recorded at 14 channel locations using 128 Hz

sampling rate. Here, all video clips slightly vary in dura-

tion, thus accordingly timepoints vary for each EEG

recording also. In Fig. 10, EEG response of participant at

channel position AF3 while seeing video clip of HA and

LA video category is presented.

E channels x timepoints, this time domain representation of

EEG signals is highly dimensional. Various deep learning

models have been tested which directly takes this time

domain representation of the EEG signals for the devel-

opment of the model [45, 46]. Whereas, as discussed pre-

viously the EEG signals are usually very complex in

nature, and the information behind different brain regions

and frequency ranges should be properly modeled for

effective model generation. Thus, for effective modeling of

EEG signals, first frequency domain processing is per-

formed here to convert the time domain representation of

EEG signals into frequency domain representation and

different required frequency ranges are then extracted. A

representation of EEG signals in different frequency ranges

for the two mentioned categories of videos is presented in

Fig. 11.

After frequency band extraction, normalized PSD values

are extracted, which estimated the amount of power con-

tent in different frequency ranges. The power content in

four frequency ranges is extracted, which resulted in 4

different features from the EEG signals, and now the sub-

feature space is represented by F channels x features, where

channels are electrode positions, i.e., 14 and features are 4

corresponding to four frequency ranges. F channels x features

represent a reduced frequency domain representation of

EEG signals and have been used by various researchers for

the development of different types of classification models

[42, 47].

The power content in different frequency ranges and

brain locations contains important information about the

cognitive state of the human. However, their direct use, i.e.,

array representation of these features may not generate an

effective model. The reason behind this is, the array rep-

resentation of extracted features does not explain the spa-

tial characteristics of the brain scalp, as well as the

connection and communication between different brain

regions during a cognitive task. Furthermore, the relative

performance of different frequency ranges also plays an

important role. Thus, two different ways of arranging these

features are explored here, i.e., SFM and PSDM. A detailed

discussion on how to encode EEG signals in these types of

representations is already explained in Sect. 3.3. During

SFM-based feature modeling a 14-channel EEG signal E

channels x features is converted into a 7 9 7 sub-matrix using

the method presented in SFM-based feature encoding

section, which is further converted into a 14 9 14 SFM.

Each cell of the SFM contains the average normalized PSD

at a specific brain location and frequency range. For PSD

image-based encoding, PSD maps of the three most sig-

nificant frequency ranges are used to develop a combined

PSDM as discussed in Sect. 3.3.2. These two different

representations are then used to train and test the CNN-

based classification model.

As AMIGOS dataset contains EEG recordings of par-

ticipants for very few affective video clips, i.e., 16, which

is a small dataset to train the model. Thus, data augmen-

tation is done here using a windowing approach. The EEG

signals are windowed every ten seconds and further

advanced by one second. The dataset was expanded in this

manner to provide more than 200 trials for a single par-

ticipant. SFM and PSDM representations for the aug-

mented trials are then used to train the CNN model.

4.2 CNN-based training models development

In the realm of computer vision, CNN is the most used

deep learning framework. It is an extended version of a

Neural Computing and Applications

123



neural network that has the capability of extracting features

from a grid-like matrix having some pattern. It delivers

more versatile and deep feature extraction, ranging from

low-level to high-level feature extraction from large data-

sets [27]. The resultant SFM and PSDM representations of

EEG signals also contain a pattern of EEG spectral

responses across various brain regions and frequency ran-

ges for a particular video stimulus. This pattern contains

the information behind certain cognitive states of the

viewer. Thus, to capture the salient features from these

representations, the power of CNN is explored here.

However, building a CNN from scratch to solve a par-

ticular problem takes a lot of time and requires a lot of

computer resources like memory, processing capacity, and

expensive CPUs and GPUs. In addition, training the net-

work requires access to a relevant sizable dataset. Transfer

learning has evolved as an effective strategy to overcome

these issues. In order to perform a different but similar task

with a smaller dataset, a pre-trained CNN model can use

the existing knowledge learned from a larger dataset. Also,

fine-tuning any pre-trained model on the target dataset is

comparatively simple and takes less time and resources.

Visual Geometry Group (VGG)-16, is a standard

16-layer CNN architecture pre-trained on the ImageNet

dataset [57]. In the literature, the researchers have explored

the power of a pre-trained VGG-16 network for the clas-

sification of other types of datasets also [27, 58]. Thus, in

this paper, to classify video clips in high arousal and low

arousal categories, VGG-16 pre-trained network is used.

VGG-16 is trained on millions of images to classify 1000

different output labels, whereas here the task is to classify

the input into two categories of arousal dimension. So,

some of the starting layers, i.e., convolution and pooling

layers of the VGG-16 are transferred as it is to utilize its

power of analyzing the pattern in images, and the last

layers, i.e., fully connected and output layer are changed

according to the required classification as presented in

Fig. 12.

In this setup, the fixed layers supply the standard fea-

tures, while the fully connected layers and output layers are

fine-tuned with the help of the target dataset. The pre-

trained VGG-16 architecture accepts inputs with dimen-

sions of 224 9 224x3. Thus, the SFM and PSDM encoded

feature representations are scaled to a dimension of

224 9 224x3 to prepare the input layer. Each model was

developed using the Pytorch framework and trained using a

single 24 GB Nvidia Titan RTX GPU. The performance of

the models is analyzed for different batch sizes.

4.3 Performance evaluation

The VGG-16-based CNN models using SFM and PSDM

feature representations are trained and tested using two

different classification approaches:

• Single subject classification

• Multi-subject classification

In a single-subject classification model, the model is

trained and tested using the EEG data of one subject to

create a subject-specific model. The fivefold cross-valida-

tion technique is adopted here. For the multi-subject clas-

sification model, data from all 40 subjects is used. LOSO

(Leave one Subject Out) cross-validation method is adop-

ted here, to test the generalizing ability of the model. With

this assessment process, the model is trained on all the

subjects except one, and the evaluation is done on the other

one. Table 4 and 5 present the performance evaluation of

the developed models using SFM and PSDM feature rep-

resentations where precision and recall are calculated using

Eq. 6 and 7, respectively.

Precision represents the measure of correctness of any

machine learning model with respect to all predictions for

positive class. It defines how much portion of the positive

prediction is actually correct with respect to all positive

predictions.

Precision ¼ TP

TPþ FP
ð6Þ

Recall represents the sensitivity of the model. It defines

that out of all actual positive predictions, how many sam-

ples are correctly predicted.

Recall ¼ TP

TPþ FN
ð7Þ

Here, during the evaluation of the proposed model,

equal importance is given to classification in both HA and

LA affective categories. Thus, the precision and recall are

calculated for both categories as presented in Tables 4 and

5 to evaluate the performance of model for classifying both

categories.

The same procedure is adopted to evaluate the model

performance on the DREAMER dataset. An average

accuracy of 90%-95% is reported during the single-subject

classification model, and 90%-93% during the multi-sub-

ject classification model.

4.4 Findings and comparative analysis

EEG signals have been studied for a variety of purposes,

including psychological state analysis, motor rehabilita-

tion, stress analysis, etc. A lot of work has been done on

reading EEG signals to infer a person’s emotional state
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also. It has been observed during the literature study, that

most of the previous work is centered on analyzing the

human emotions evoked by a particular emotional visual

stimulus. The researchers have explored various optimal

feature extraction approaches with the purpose of mapping

the viewers’ emotions with their physiological recordings

or facial expressions. Whereas very few studies have been

done on the emotive labeling of multimedia information

using EEG data for understanding the fact that which type

of content affects viewers the most. Furthermore, during

processing, EEG signals were explored blindly with dif-

ferent combinations of classification methods for the

automatic classification of human affective states. The

major insight regarding the relationship between various

important frequency ranges and brain regions is ignored

while designing a model.

The major findings of the work presented in this paper

are, first the relationship between multimedia content and

physiological responses is addressed here with the aim of

analyzing the two categories of video clips under the

arousal category. The arousal emotional space represents

the excitement level of the viewer. Thus, it is used to

analyze the video on the basis of the fact that how much the

viewer is attentive while watching video clips. Second, for

effective modeling of EEG signals the relationship between

various important frequency ranges and brain regions is

explored and two different feature representation approa-

ches are presented to further facilitate the CNN-based

model preparation. The significance of the proposed effort

is illustrated by a comparison to some of the most relevant

publications in Table 6.

5 Conclusion

The categorization and labelling of visual content are

activities that can be performed extremely easily and

without much effort by humans. In addition, this visual

content is typically designed with specific feelings in mind,

which the creators hope to evoke in their viewers. Con-

sidering the emotional aspects of videos, in this paper, an

intriguing application of EEG signals is presented to

facilitate implicit affective tagging of video clips by

assessing the human’s cognitive state through EEG

responses of viewers while watching that content. Fur-

thermore, due to the importance of various brain regions,

their communication and connection during cognitive

tasks, and the information content in different frequency

ranges, a contribution is made toward the effective mod-

eling of EEG signals to explore the power of their spatial

characteristics and the importance of different frequency

ranges. In this paper two different effective representations

of EEG signals are presented, i.e., spatial feature matrix

and power spectral density maps. The proposed feature

representations highlight the spatial features of EEG sig-

nals and are further used to train a CNN model for the

implicit tagging of two categories of videos. The result

shows that the two different representations provide better

classification accuracy in comparison to the isolated rep-

resentation of EEG signals at different brain locations.

Here the simulations presented in this paper show the

pioneering applicability of the proposed system for affec-

tive tagging of video based on human excitement level.

The current work presents the usage of EEG signals for

analyzing the cognitive state of the participant with respect

to visual stimuli, whereas the publicly available dataset

contains other physiological recordings also such as ECG,

GSR, etc., thus a combination of EEG signals with other

modalities can also be explored for modeling of affective

state. Also, in the future, the work can be extended by

taking the physical features of video content also in

account, where various audio-visual features of video

content can be combined with EEG features to train a deep

learning-based network. Furthermore, the current study

utilized the pre-trained CNN model for the development of

affective video tagging framework, which can be further

extended by designing a dedicated model for EEG signal

classification. Emotions represent affective experiences of

one’s feelings, thus the emotional aspect of video content

can be considered a suitable criterion for their indexing and

categorization. It can provide a subjective as well as high-

level analysis of the video. In short, an affective analysis

and tagging of video content promise a new direction

toward the most popular problem areas in the multimedia

community such as automatic video summarization, high-

light extraction, indexing, etc., and motivating researchers

for developing affective models.
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